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Abstract

Using a derivation data set of 1253 patients, we built several logistic regression and neural network models
to estimate the likelihood of myocardial infarction based upon patient-reportable clinical history factors only.
The best performing logistic regression model and neural network model had C-indices of 0.8444 and 0.8503,
respectively, when validated on an independent data set of 500 patients. We conclude that both logistic
regression and neural network models can be built that successfully predict the probability of myocardial
infarction based on patient-reportable history factors alone. These models could have important utility in
applications outside of a hospital setting when objective diagnostic test information is not yet be available.
(© 2000 Elsevier Science Ltd. All rights reserved.
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1. Background

In the United States, approximately 1.5 million myocardial infarctions (MI) occur each year. The
mortality rate associated with acute myocardial infarction in the US is approximately 30%, and more
than half of these deaths occur without the patient even reaching the hospital [1]. A recent study of
three UK regions suggest that the mortality rate may be even higher [2]. There is ample evidence
that the earlier that appropriate treatment is initiated, the more likely that these patients will have
a positive outcome [3—6]. Early identification of these patients is critical to successful treatment of
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the disease. It is therefore, essential that patients developing symptoms suggesting MI seek care and
be admitted to a suitably equipped hospital as soon as possible.

Unfortunately, patients often delay substantially before seeking care [2,3]. Ruston et al. [7] suggests
that this is due to several factors, including lack of understanding by patients of the symptoms of MI,
emotional factors and denial by patients, and inadequate advice by health care workers when patients
develop symptoms. Some studies [8] suggest the need for better characterization of symptoms that
may be predictive of myocardial infarction. There is evidence that patients with better knowledge
of the symptoms of MI will seek help earlier [7]. If patients could get rapid and accurate advice on
whether their symptoms were likely to be serious, then it is possible that delays in seeking treatment
could be further reduced [9].

Previous work has been published [10—17] that demonstrated that excellent prediction models for
MI can be developed with a high degree of discrimination [15]. These models perform well primarily
because of the use of EKG findings as predictors in the model [14]. Certain EKG findings, such
as ST elevation, are well known to be highly indicative of myocardial injury, eventually leading to
myocardial infarction. The discrimination performance of prediction models is typically measured in
terms of the area under the receiver operating characteristic (ROC) curve,! and these models have
areas under the ROC curve as high as 0.959 [15].

The purpose of this study was to determine how well a predictive model would perform based
solely upon patient-reportable clinical history factors, without using diagnostic tests or physical exam
findings. Even though we would not expect such a model to perform as well as one using these
strong predictors, the model may have important practical applications. This type of prediction model
might have application outside of the hospital setting to give accurate advice to patients to influence
them to seek care in appropriate situations. For example, such a system might be used directly
by patients in a patient-oriented software application, or might be used by healthcare workers as a
decision support aid in telephone nurse triage. Given the very high mortality from MI in the US,
even a small reduction in median time from onset of symptoms to treatment could translate into a
substantial number of lives saved.

2. Materials and methods
2.1. Data

Two data sets totaling 1753 patients were used in this study. The derivation data set consisted of
1253 patients who presented to the emergency room in the Edinburgh Royal Infirmary in Scotland.
The validation data set consisted of 500 patients from Sheffield, England. Both data sets contained
the same 45 potential prediction attributes and a binary outcome variable indicating the presence or
absence of MI. The prevalence of MI in the Edinburgh data set was 21.9%, while the prevalence

! The Receiver Operating Characteristic curve is a commonly used tool for evaluating the performance of diagnostic tests
or prediction models [18-20]. The ROC curve is a plot of sensitivity vs. (1-specificity) over a range of threshold values.
The area under the ROC curve is a standard measure of discrimination, which is one measure of the accuracy of a model.
The greater the area under the ROC curve, the greater the ability of the test to discriminate between normal and abnormal
values. The area under an ROC curve can range from 0.5 (no discriminating ability) to 1.0 (perfect discrimination of
normal and abnormal cases).
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Table 1
Patient-reportable clinical history factors that were candidates for inclusion as predictor covariates in the models®

Mean
Derivation set Validation set
Variable (N =1253) (N =500)
1 Age (years) 57.600 59.994
2 Smokes 0.374 0.364
3 Ex-smoker 0.235 0.224
4 Family history of MI 0.228 0.254
5 Diabetes 0.070 0.098
6 Hypertension 0.160 0.194
7 Hyperlipidemia 0.030 0.036
8 Severe chest pain 0.951 0.926
9 Retrosternal pain 0.736 0.780
10 L chest pain 0.276 0.254
11 R chest pain 0.115 0.124
12 Back pain 0.105 0.148
13 L arm pain 0.465 0.526
14 R arm pain 0.168 0.164
15 Pleuritic pain 0.177 0.156
16 Postural 0.188 0.090
17 Sharp 0.279 0.200
18 Tightness 0.543 0.508
19 Sweating 0.410 0.530
20 Shortness of breath 0.417 0.438
21 Nausea 0.103 0.318
22 Vomiting 0.103 0.102
23 Syncope 0.036 0.066
24 Episodic 0.073 0.166
25 Worsening (min) 17.397 50.368
26 Duration (min) 8.840 12.344
27 Previous angina 0.442 0.438
28 Previous MI 0.333 0.246
29 Worse than angina 0.288 0.324
30 Sex (1 = male) 0.662 0.586
MI 0.219 0.308

*Mean values are shown for each variable for both the derivation (Edinburgh) and validation (Sheffield) data sets.

of MI in the Sheffield data set was 30.8%. The 45 potential prediction attributes contained clinical
history, physical exam, and EKG findings. Kennedy et al. [14] previously published work using this
data demonstrating the use of logistic regression (LR) models to successfully predict the likelihood
of MI based on the full set of attributes. Since the purpose of this study was to build models
based on patient-reportable history factors only, we removed all EKG findings and all physical exam
findings that could not be reasonably expected to be reportable by the patient. Table 1 shows the
resulting list of 30 patient-reportable history factors that were included as potential covariates in our
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models. For comparison, the mean values for the history factors and the outcome variable (MI) are
given. All variables were binary (0= absent or 1= present) except for “Age” (years), “Worsening”
(minutes), and “Duration” (minutes). The variable “Postural” indicates whether the pain changes
depending on whether the patient is sitting or recumbent. “Worsening” refers to how long the pain
has been getting worse. “Worse than angina” refers to whether the patient feels that the current pain
is worse than anginal pain. “Sex” refers to the gender of the patient, where 0= female and 1= male.

2.2. Randomization

For both the logistic regression and neural network model building, the derivation set of 1253
cases was randomly split into 2/3 training and 1/3 holdout sets. To compare the effects of different
randomization splits on model building, we repeated the randomization process 10 times, and built
models for each of the 10 splits.

2.3. Logistic regression

The SAS System for Windows, version 6.12 [21] was used for building the logistic regression
(LR) models. We built several types of LR models for comparison. The first type used all 30 patient
history factors as covariates. The remaining types used only a subset of history factors that were
chosen using various variable selection methods. We built models using the automatic stepwise,
forward, and backward variable selection algorithms in SAS using p = 0.05 as the entry and exit
criteria. We then built a “most popular” model where we first tallied up the number of times a
particular variable appeared in any of the automated variable selection algorithms (see “SAS tally”
column in Table 2), and then we built a model using the 11 “most popular” variables (see the
“SAS picks” column in Table 2). Finally, we asked a cardiologist to identify the history factors
he considered to be very important predictors for MI, and we built a model using only these 17
variables (see “Expert picks”, Table 2). Each algorithm was run on each of the 10 randomization
splits.

2.4. Neural network

NevProp4 release 1 [22] was used for building the neural network models. NevProp4 requires
a user-supplied random initialization seed to set the initial weights in the network, and also to
randomly split the training set for the “AutoTrain” option. We chose 10 random initialization seeds
to determine what effect initial conditions would have on the final model. We attempted to build a
total of 100 different neural network models using the 10 initialization seeds on each of the same
10 training/holdout data splits that were used to build the logistic regression models above. For all
neural network models, we built 2-layer networks using all 30 variables as inputs and 15 hidden
units. For all models, we used a learning rate of 0.001 with momentum set at 0.0. We used NevProp’s
“AutoTrain” option with NSplits = 5, which randomly splits the allotted training data into training
and holdout sets 5 times and takes the average of all of the runs to obtain a target error. The final
model is then built by training on all train data using the target error as the stopping criterion.
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Table 2
Variable selection for the logistic regression models®
SAS SAS Expert
Variable tally picks picks
1 Age 27 X X
2 Smokes 25 X X
3 Ex-smoker 0
4 Family history of MI 4
5 Diabetes 1 X
6 Hypertension 0
7 Hyperlipidemia 0 X
8 Severe chest pain 0 X
9 Retrosternal pain 7 X
10 L chest pain 7 X
11 R chest pain 0
12 Back pain 0
13 L arm pain 27 X X
14 R arm pain 7
15 Pleuritic pain 25 X X
16 Postural 7
17 Sharp 19 X
18 Tightness 1
19 Sweating 27 X X
20 Shortness of breath 0
21 Nausea 24 X
22 Vomiting 0
23 Syncope 0
24 Episodic 25 X X
25 Worsening 10 X
26 Duration 0
27 Previous angina 27 X X
28 Previous MI 25 X X
29 Worse than angina 0 X
30 Sex 25 X X

*The “SAS tally” column shows the number of times each covariate entered into one of the stepwise, forward, or backward
variable selection logistic regression models. The “SAS picks” column indicates the variables that were chosen for the
“Most popular” group of models. The “Expert picks” column shows a cardiologist’s opinion of important prediction factors
for MI; these variables were used in the “expert” models.

3. Results

Table 3 shows the logistic regression results from the derivation (Edinburgh) data set. The results
shown are average C-index values (C-index [23] is equivalent to the area under the ROC curve [20])
from the 10 different randomization splits for each of the variable selection methods — all variables,
stepwise, forward, and backward variable selection algorithms. Results are also shown for the “most
popular” model built using the 11 most commonly selected variables and for the model built using
the 17 variables selected by a cardiologist as being highly predictive of MI (“expert”). Three of the
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Table 3
Logistic regression summary results showing the average C-indices from the 10 random splits of the derivation data set
(Edinburgh, N = 1253)*

Logistic regression C-indices (Derivation holdout set)

Model Average Range

All 0.8420 (0.8239,0.8681)
Stepwise 0.8352 (0.8084,0.8588)
Backward 0.8367 (0.8084,0.8608)
Forward 0.8350 (0.8084,0.8588)
Most popular 0.8450 (0.8228,0.8727)
Expert 0.8392 (0.8177,0.8631)

%The minimum and maximum C-indices found over all 10 splits is also shown. Standard SAS stepwise, forward, and
backward variable selection models were run on each split. The 11 variables selected most often by the stepwise, forward,
and backward algorithms were then used to build another LR model shown in the row labeled “Most popular”. An
additional LR model was built using the 17 variables selected by a cardiologist as being highly predictive of MI.

Table 4
Beta coefficients from the best logistic regression model. This model was obtained from split 8 using the 11 “most popular”
selected variables

Logistic regression beta coefficients

Variable Beta p-value
Intercept —6.1005 0.0001
Age 0.0674 0.0001
Smokes 0.7002 0.0020
L arm pain 0.7165 0.0005
Pleuritic pain —2.9265 0.0048
Sharp —1.0132 0.0017
Sweating 1.1307 0.0001
Nausea 0.9580 0.0007
Episodic —2.0136 0.0100
Previous ang —0.9689 0.0001
Previous MI —0.7715 0.0013
Sex 0.5236 0.0195

10 stepwise models were not included in the analysis because their build halted prematurely due to
the Wald criterion.

Based on average C-index values obtained from the derivation holdout set, the best performing
logistic regression models were the ones that used the 11 “most popular” variables, so we chose
our final model from this group. We ranked all 10 of these models by C-index. The highest-ranking
model had an aberrancy in that the f§ coefficient for “pleuritic pain” had an abnormally large p-value
of 0.9631. This was presumably the result of an uneven random split of the pleuritic pain cases.
Consequently, this model was thrown out and the second-highest ranking model was chosen as the
final model, which turned out to be split 8. This model had a C-index of 0.8631 on the holdout set.
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Table 5
Neural network C-indices from the derivation data set®

Neural network C-indices (Derivation holdout set)

C-index C-index
Trial Seed Average Range
1 6754 0.8323 (0.8188,0.8480)
2 9689 0.8324 (0.8159,0.8626)
3 31532 0.8357 (0.8145,0.8611)
4 15202 0.8311 (0.8122,0.8517)
5 892 0.8311 (0.8076,0.8531)
6 6431 0.8356 (0.8155,0.8558)
7 12432 0.8295 (0.8059,0.8563)
8 22169 0.8309 (0.8139,0.8484)
9 5068 0.8348 (0.8098,0.8527)
10 3298 0.8355 (0.8168,0.8523)
Average: 0.8329 (0.8059,0.8626)

*For each trial we selected a random seed for NevProp to set initial conditions. Each seed was run on each of the 10
train/holdout splits of the derivation set. Each row gives the average and range of C-indices for that seed from the 10
train/holdout splits. The final number is the average C-index of all models.

This model was selected (Table 4) as the final “best” logistic regression model to be evaluated on
the Sheffield validation data set below.

Table 5 shows derivation set (Edinburgh) results from the neural network models. The average
C-indices across all 10 splits for each initialization seed are shown in the table. Three out of the
100 models failed to converge to a final model because of unstable oscillations during the training
process. The average C-index of the 97 successful models was 0.8329. The network with the highest
C-index (0.8611) was found in trial 3 of split 4, and this network was chosen as the “best” neural
network to be evaluated on the Sheffield validation data set below.

After selecting the best logistic regression model and the best neural network from our analysis
above, we then tested these models on our validation set of 500 patients from Sheffield, England.
Fig. 1 shows the resulting ROC curves and C-indices. The final logistic regression model had a
C-index of 0.8444 on the Sheffield validation set, and the final neural network had a C-index of
0.8503 on the Sheffield validation set. There was no statistical difference between the two models
(p = 0.38). Calibration curves for the logistic regression and neural network models are shown in
Figs. 2 and 3.

4. Discussion

Note that in the final logistic regression model, some predictive factors had negative . For some
factors, this is not surprising, since it is generally accepted that the presence of a pleuritic or postural
component to the chest pain decreases suspicion of MI. However, it may not be as obvious why
the other factors — episodic pain, history of previous angina, and history of previous MI — would
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Fig. 1. Receiver operating characteristic curves for the best logistic regression model and the best neural network model
when run on the independent Sheffield validation data set.

result in a decreased probability of MI. Nevertheless, somewhat plausible arguments may be devised
for some of these attributes. For example, patients that have previously had confirmed angina may
be more prone to seek care at an emergency room for any small hint of chest pain. This would tend
to increase their rate of “false alarms” in the ER.

The variables selected by the SAS stepwise, forward, and backward selection algorithms were
different from the ones named by the cardiologist as being important predictors for MI. There may
be several explanations for this, but one of the factors could be the characteristics of the original data
set used to derive the model. This is always an important factor to consider when building predictive
models derived from retrospective data. By necessity, many simplifying assumptions must be made
in order to distill a complex patient history into a series of binary variables for model building,
and it likely that some important information is lost in this process. The exact definitions of the
fields and the consistency with which the questions were asked are important factors in obtaining
an accurate data set. For example, the question of “severe chest pain” is quite subjective. Note in
Table 1 that our derivation data set had a greater than 95% positive response to this question. Given
such homogeneity, it is obvious that this variable would not do well as a discriminating predictor
variable. If a more objective and discriminating scale had been used, such as a 10-point pain rating
scale, it may have increased the utility of this attribute in predicting MI. Also note from Table 1 that
although the mean values for most of the attributes are comparable between the two data sets, there
are more significant differences for some of the attributes. Some of this variation is to be expected
when comparing data collected by different institutions.



S.J. Wang et al. | Computers in Biology and Medicine 31 (2001) 1-13 9

Calibration Curve for Logistic Regression Model
40 T T T T T T T T

25+ E

20+ b

Obsened

c } 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Model

Fig. 2. Calibration curve for the best logistic regression model when run on the independent Sheffield validation data set.

Calibration Curve for Neural Network Model
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Fig. 3. Calibration curve for the best neural network model when run on the independent Sheffield validation data set.

These prediction models were built and tested using data sets obtained from patients presenting
to emergency rooms. This introduces a form of “referral bias” since our derivation data set only
contains patients who have already decided to seek care. The eventual goal of this work is to use
these models for the population of patients who have not yet decided to seek care. It remains to be
seen whether the models will perform as well in these situations where the prevalence rate of MI
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will presumably be much lower. It is also possible that the presentation of MI patients in the US
may differ from those in Scotland and England. In order to increase confidence in the robustness of
our models, they should be further validated using other independently obtained data sets and with
prospective testing.

We made a subjective determination as to which prediction factors could be easily reported by a
patient. Further evaluation will be needed to determine if patients can accurately report these data
items. The accuracy of these factors will obviously affect the performance of the prediction models.

The fact that both the logistic regression and neural network models had comparable performance
appears to imply that there are no significant higher-order factors, interaction factors, or non-linearly
separable factors in this data set. Furthermore, if we believe in the accuracy of this data set, then
this generalizes to imply that for this clinical domain, the probability of MI can be modeled by a
function of a simple linear combination of patient-reportable history factors. In future work, other
neural network parameters could be adjusted to try to construct better networks. Other variations
that could be tested include the number of hidden units, the number of layers, and the number and
choice of input variables.

The original motivation for this work was to determine if a clinical software application could be
built that could successfully predict the likelihood of a myocardial infarction based on clinical history
factors alone. As expected, our models do not perform as well as those that used physical findings
and EKG data, but they still performed remarkably well even without this objective information.
The C-indices of our models were only about 0.11 lower than models [15] that also incorporated
physical findings and EKG test data. Because of the shape of the ROC curve for these models (Fig.
1), a threshold could be chosen for these models to achieve a sensitivity of greater than 90% with
a corresponding specificity of about 60%. This combination of sensitivity and specificity may be
acceptable in situations such as a screening application where we are willing to tolerate a high rate
of false positives in order to maximize the sensitivity of the application.

Our results lead us to believe that these models could be used in real software applications in a
clinical setting. If the performance of these models holds up in further studies, software applications
could be written using these models that could have important utility in settings outside of a hospital
when a healthcare provider may not yet be available. For example, a software application could be
designed to assist nurses doing telephone triage when they are assessing a patient’s risk of MI
over the phone. Alternatively, an application could be designed for direct use by patients to assist
them in determining the seriousness of their chest pain symptoms. For example, a standalone software
application that assesses chest pain symptoms could be designed to run on a home desktop computer
or personal digital assistant (PDA) device. Patients could enter information about their chest pain
symptoms and get back an estimate of the likelihood that they are experiencing symptoms of a heart
attack and obtain advice on whether or not they should seek professional care. The purpose of these
applications would be to enable patients to become better informed about their condition and to
encourage them to seek professional care at an earlier stage in the appropriate situations.

5. Summary

The purpose of this study was to build predictive models for estimating the likelihood of my-
ocardial infarction based upon patient-reportable clinical history factors only. These models could
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be useful in settings outside of the hospital in encouraging patients seek appropriate care. Two
data sets totaling 1753 patients were used to build and test these models. We built several models
using logistic regression and neural networks and compared their performance. The first data set
consisting of 1253 patients was used to build and train the models. Logistic regression models were
constructed using all variables, and using standard stepwise, forward, and backward variable selec-
tion algorithms. The most commonly selected variables were then used to construct the “best” LR
model. Neural networks were also constructed using the same data sets. The best performing logistic
regression model and the best neural network were then chosen and evaluated using a previously
unseen data set of 500 patients. The final logistic regression model had a C-index of 0.8444 on
the validation data set. The final neural network had a C-index of 0.8503 on the same validation
set. The difference in C-indices between logistic regression and neural networks was not statistically
significant (p = 0.38). We conclude that logistic regression and neural network models can be built
that successfully predict the probability of myocardial infarction based on patient-reportable history
factors alone. Models that only require patient-reportable factors for prediction may have important
applicability as screening tools in settings outside of the hospital when patients need advice on
whether or not to seek professional care.
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